判断依据:设两个圆的半径为R和r,圆心距为d。
则有以下四种关系:
(1)d>R+r 两圆外离; 两圆的圆心距离之和大于两圆的半径之和。
(2)d=R+r 两圆外切; 两圆的圆心距离之和等于两圆的半径之和。
(3)d=R-r 两圆内切; 两圆的圆心距离之和等于两圆的半径之差。
(4)d<R-r 两圆内含;两圆的圆心距离之和小于两圆的半径之差。
(5)d<R+r 两园相交;两圆的圆心距离之和小于两圆的半径之和。
与圆相关的公式:
1、半圆的面积:S半圆=(πr^2)/2。(r为半径)。
2、圆环举首面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
3、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。
4、半圆的正谨数周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。
5、扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半晌肢径)
6、扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)
7、圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)
于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。