数值积分,用于求定积分的近似值。在数值分析中,数值积分是计算定积分数值的方法和理论。在数学分析中,给定函数的定积分握世的计算不总是可行的。许多定积分不能用已知的积分公式得到精确值。
数值积分是利用黎曼积分等数学定义,用数值逼近的方闷让法近似计算给定的定积分值。借助于电子计算设备,数值积分可以快速而有效地计算复杂的积分。
必要性:
数值积分的必要性源自计算函数的原函数的困难性。利用原函数计算定积分的方法建立在牛顿-莱布尼兹公式之上。然而,原函数可以用初等函数表示的函数为数不多,大部分的可积函数的积分无法用初等函数表示,甚至无法有解析表达式。
另外,当积分区域是曲面、三维形体以至于高维流形时,牛顿-莱布尼兹公式不再适用,只能使用更广泛的格林公式或斯托克斯公式,以转化为较低维数上的积分,但只能用于段罩肢少数情况。因此,只能使用数值积分计算函数的近似值。
以上内容参考:百度百科·——数值积分