对平行四边形的认识如下:
平行四边形是在同一个二维平吵闹知面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。在欧几里德几何中,平行四边形是具有两对平行边的简单四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
平行四边形的性质如下:
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(4)夹在两条平行线间的平行四边形升消的高相等。
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(6)连接任意四边形各边的中点所得图形是平行四边形。
(7)平行四边形的面积等于底和高的积。
(8)过平行四边形对角线弯陵交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
(13)平行四边形对角线把平行四边形面积分成四等份。
(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
(15)平行四边形的面积等于相邻两边与其夹角正弦的乘积。