您的位置首页生活百科

三角函数的定积分公式

∫sin ²x dx =1/2x -1/4 sin 2x + C

∫ cos ²x dx = 1/2+1/4 sin 2x + C

∫ tan²x dx =tanx -x+ C

∫ cot ²x dx =-cot x-x+ C

∫ sec ²x dx =tanx + C

∫ csc ²x dx =-cot x+ C

∫arcsin x dx = xarcsin x+√(bai1-x²)+C

∫arccosx dx = xarccos x-√(饥虚数誉卜1-x²)+C

∫arctan x dx = xarctan x-1/2ln(1+x²)+C

∫arc cot x dx =xarccot x+1/2ln(1+x²)+C

∫arcsec xdx =xarcsec x-ln│dux+√(x²-1)│+C

∫arccsc x dx =xarccsc x+ln│x+√(x²-1)│+C

三角函数的定积分公式

扩展资料:

如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。

作为推论,如果两个上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。

如果黎曼可积的非负函数f在上的积分等于0,那么除了有限个点以外,f = 0。如果勒贝格可积的非负函数f在上的积分等于0,那么f几乎处处为0。如果中元素A的测度μ (A)等于0,那么任何可积函数在A上的积分等烂首于0。