您的位置首页生活小窍门

几何图形公式小学

几何图形公式小学

几何图形公式大全小学

  几何图形公式大全小学,数学是一门我们从小酒开始学的主学课程,学好数学也能对我们的生活中有帮助,因为可以套用很多的公式解决问题,下面是几何图形公式大全小学。

   1、正方形

  正方形的周长=边长×4公式:C=4a

  正方形的面积=边长×边长公式:S=a×a

  正方体的体积=边长×边长×边长公式:V=a×a×a

   2、长方形

  长方形的周长=(长+宽)×2公式:C=(a+b)×2

  长方形的面积=长×宽公式:S=a×b

  长方体的体积=长×宽×高公式:V=a×b×h

   3、三角形

  三角形的面积=底×高÷2公式:S=a×h÷2

   4、平行四边形

  平行四边形的面积=底×高公式:S=a×h

   5、梯形

  梯形的面积=(上底+下底)×高÷2公式:S=(a+b)h÷2

   6、圆

  直径=半径×2公式:d=2r

  半径=直径÷2公式:r=d÷2

  圆的周长=圆周率×直径公式:c=πd=2πr

  圆的面积=半虚差码径×半径×π公式:S=πrr

   7、圆柱

  圆柱的侧面积=底面的周长×高公式:S=ch=πdh=2πrh

  圆柱的表面积=底面的周长×高+两头的圆的面积公式:S=ch+2s=ch+2πr2

  圆柱的总体积=底面积×高庆带公式:V=Sh

   8、圆锥

  圆锥的总体积=底面积×高×1/3公式:V=1/3Sh

  9、三角形内角和=180度

   (一)图形的认识、测量

   量的计量

  一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。

  二、长度单位:

  1千米=1000米

  1米=10分米

  1分米=10厘米

  1厘米=10毫米

  1米=100厘米

  1米=1000毫米

  三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。

  四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。

  五、测量和计算大面积的土地,通常用平方千米作单位。边差哪长1000米的正方形土地,面积是1平方千米。

  六、面积单位:(100)

  1平方千米=100公顷

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

  八、体积单位:(1000)

  1立方米=1000立方分米

  1立方分米=1000立方厘米

  1升=1000毫升

   平面图形【认识、周长、面积】

  一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

  二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。

  三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。

  四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。

  五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

  六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。

  按边分,可以分为等边三角形、等腰三角形和任意三角形。

  七、三角形的内角和等于180度。

  八、在一个三角形中,任意两边之和大于第三边。

  九、在一个三角形中,最多只有一个直角或最多只有一个钝角。

  十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。

  十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。

  十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。

  十三、围成一个图形的所有边长的总和就是这个图形的周长。

  十四、物体的表面或围成的平面图形的大小,叫做它们的面积。

  十五、平面图形的面积计算公式推导:

   【1】平行四边形面积公式的推导过程

  打开今日头条,查看更多精彩图片

  ①把平行四边形通过剪切、平移可以转化成一个长方形。

  ②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。

  ③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。

   【2】三角形面积公式的推导过程

  ①用两个完全一样的三角形可以拼成一个平行四边形。

  ②平行四边形的底等于三角形的底,平行四边形的高等于三角形的'高,三角形面积等于和它等底等高的平行四边形面积的一半

  ③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。 即:S=ah÷2。

   【3】梯形面积公式的推导过程

  ①用两个完全一样的梯形可以拼成一个平行四边形

  ②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半

  ③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。

   【4】画图说明圆面积公式的推导过程

  ①把圆分成若干等份,剪开后,拼成了一个近似的长方形。

  ②长方形的长相当于圆周长的一半,宽相当于圆的半径。

  ③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。即:S=πr2

   十六、平面图形的周长和面积计算公式:

  长方形周长 =(长+宽)× 2

  长方形面积 = 长 × 宽

  正方形周长 = 边长 × 4

  正方形面积 = 边长 × 边长

  平行四边形面积 = 底 × 高

  三角形面积 = 底 × 高 ÷ 2

   立体图形【认识、周长、面积】

  一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。

  二、圆柱的特征:一个侧面、两个底面、无数条高。

  三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。

  四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。

  五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。

  六、圆柱和圆锥三种关系:

  ①等底等高: 体积1∶3

  ②等底等体积:高1∶3

  ③等高等体积:底面积1∶3

  七、等底等高的圆柱和圆锥:

  ①圆锥体积是圆柱的1/3,

  ②圆柱体积是圆锥的3倍,

  ③圆锥体积比圆柱少2/3,

  ④圆柱体积比圆锥多2倍。

  八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。

  九、立体图形公式推导:

  【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)

  ①圆柱的侧面展开后一般得到一个长方形。

  ②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

  ③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。

  ④圆柱的侧面展开后还可能得到一个正方形。

  正方形的边长=圆柱的底面周长=圆柱的高。

  【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?

  ①把圆柱分成若干等份,切开后拼成了一个近似的长方体。

  ②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

  ③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。

  【3】请画图说明圆锥体积公式的推导过程?

  ①找来等底等高的空圆锥和空圆柱各一只。

  ②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。

  ③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=1/3Sh。

  十、立体图形的棱长总和、表面积、体积计算公式:

   名称

   计算公式

  长方体棱长总和

  长方体棱长总和 = (长+宽+高)× 4

  长方体表面积

  长方体表面积=(长×宽+长×高+宽×高)×2

  长方体体积

  长方体体积=长×宽×高

  正方体棱长总和

  正方体棱长总和=棱长×12

  正方体表面积

  正方体表面积=棱长×棱长×6

  正方体体积

  正方体体积=棱长×棱长×棱长

  圆柱体侧面积

  圆柱体侧面积=底面周长×高

  圆柱体表面积

  圆柱体表面积=侧面积+底面积×2

  圆柱体体积

  圆柱体体积=底面积×高

  圆锥体体积

  圆锥体体积=

   (二)图形与变换

  一、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。

  二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。

  三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。

   (三)图形与位置

  一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置。

  二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。