您的位置首页百科问答

在三角形ABC中,角A,B,C的对边分别为abc,且A,B,C,成等差数列

在三角形ABC中,角A,B,C的对边分别为abc,且A,B,C,成等差数列

由ABC成等差数列,则有2B=A+C,又A+B+C=π,所以,B=π/3①由正弦定理得:a/sinA=b/sinB=c/sinC,所以,sinA=asinB/b=3×(√3/2)/√13=3√39/26由于,a=3<b=√13,所以A<B=π/3,则,cosA=√(1-sin²A)=5√13/26sinC=sin(π-A-B)=sin(A+B)=sinAcosB+cosAsinB=(3√39/26)×(1/2)+5√13/26×(√3/2)=7√39/52所以,c=bsinC/sinB=√13×(7√39/52)/(√3/2)=7/2②t=sinAsinC=sin(π-B-C)sinC=sin(2π/3-C)sinC=(sin2π/3×cosC-cos2π/3×sinC)sinC=(√纯胡3/2)sinCcosC-(1/2)sin²C=(√3/稿祥4)sin2C-(1/4)(1-cos2C)=(√3/4)sin2C+(1/4)cos2C-1/4=(1/8)sin(2C+π/6)-1/4由于,0<C<2π/3,所以,π/6<2C+π/6<3π/2所以当sin(2C+π/6)=sin(π/2)=1时,t取得最大值即t=1/8-1/4=-1/8如有不懂请追问望键裤搏采纳