要使OA+OB+OC+OD最小,则点O是线段AC、BD的交点,连接AC、BD相交于点O,则点O就是所要找的点。如图所示:
解题过程:
取不同于点O的任意一点P,连接PA、PB、PC、PD,根据三角形任意两边之和大于第三边可得PA+PC>AC,PB+PD>BD,那么结合图形即可得到PA+PB+PC+PD>OA+OB+OC+OD。
即点O是线段AC、BD的交点时,OA+OB+OC+OD之和最小。由此可知,点O就是所要找的四边形ABCD内符合要求的点。
扩展资料
“三角形两边之和大于第三边”可由欧几里得几何的五条公设直接导出,而由此可以证明两点告岁之间的折线侍友粗段中,直线段最短。
四边形有两条对角线,四边形面积等于两条对角线的积的一半。例:四边形ABCD中,AC⊥BD ,则S□ABCD=1/2·AC·BD
对角线垂直的特殊四边形有:菱形、正方形、特殊梯形。
四边形不具有三角形的稳定性,易于变形,但正是由于四边形不稳定具有的活动性,使其在生活中有广泛的应用,如拉伸门等拉伸、折叠结构。
参老镇考资料来源:百度百科--两点之间线段最短
参考资料来源:百度百科--四边形