所谓黎曼函数R(x),是定义在区间0~1上的一个构造函数:当x是有理数p/q(p、q为互质整数)时,R(x)=1/q;当x是无理数时,R(x)=0.黎曼函数是由黎曼进行定义,用来作为数学分析中反例说明函数方面的待证性质的。如:黎曼函数在(0,1)内所有无理数点处连续,在所有有理数点处间断。每一点处都存在着极限,且极限都是0(可见间断点都属第一类中的可去间断点)。这个函数在[0,1]上可积渗凳,它在[0,1]上的定积分为0,等等。下面将对黎曼函数的携携间断点是第一类间断点中的可去间断点进行证明。先证明对于(0,1)中的任意一点a,当x→a时,limR(x)=0,这是因为,对任意正数丛隐旅ε,要使|R(x)-0|>ε成立,x显然不能取为无理数,因为x为无理数时,R(x)=0,不可能让0大于正数ε。而当x为有理数p/q时,R(x)=1/q.而要|R(x)-0|>ε成立,即1/q>ε,q<1/ε.但明显地,使这一式子成立的正整数q不会超过[1/ε],只有有限个。那么,形如p/q的这种最简真分数的个数也最多只有有限个。设这些有理数分别记为x1,x2,……,xk.然后,我们在|x1-a|、|x2-a|、……、|xk-a|中通过比较,一定能选择出最小的正数|Xi-a|,并令δ=|xi-a|/2.即存在着正数δ,当0<|x-a|<δ时,|R(x)-0|<ε.所以,x→a时,R(x)→0.利用这一结论知,当a为无理数时,R(x)在x=a处因极限值等于函数值,故而连续;当a为有理数点时,虽然R(x)在x=a处有极限0,但函数值R(a)不为0,从而x=a成为R(x)的第一类间断点中的可去间断点。证毕。望采纳
相关文章
-
应用型本科有哪些
2023-08-22 23:38 阅读(553) -
应用物理学专业考研方向
2023-08-02 23:29 阅读(566) -
应用相约久久卫星地图登录的好处
2023-07-30 02:43 阅读(595)
1 应用未安装怎么解决
597 阅读
2 应用英语和商务英语的区别? (还有商务英语是英语专业吗?可以考8级吗)
551 阅读
3 应用韩语专业的就业前景
574 阅读
4 应用心理学硕士的就业方向
606 阅读