您的位置首页百科词库

塞瓦定理

塞瓦定理

塞瓦定理 在△ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 证法简介 (Ⅰ)本题可利用梅涅劳斯定理证明: ∵△ADC被直线BOE所截, ∴ (CB/BD)*(DO/OA)*(AE/EC)=1 ① 而由△ABD被直线COF所截,∴ (BC/CD)*(DO/OA)*(AF/FB)=1② ②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1 (Ⅱ)也可以利用面积关系证明 ∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③ 同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤ ③×④×⑤得BD/DC*CE/EA*AF/FB=1 利用塞瓦定理证明三角形三条高线必交于一点: 设三边AB、BC、AC的垂足分别为D、E、F, 根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]=1,所以三条高CD、AE、BF交于一点。 可用塞瓦定理证明的其他定理; 三角形三条中线交于一点(重心):如图5 D , E分别为BC , AC 中点 所以BD=DC AE=EC 所以BD/DC=1 CE/EA=1 且因为AF=BF 所以 AF/FB必等于1 所以AF=FB 所以三角形三条中线交于一点 此外,可用定比分点来定义塞瓦定理: 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。于是AL、BM、禅磨CN三线交于一点的充要条件是λμν=1。(注意与梅涅劳斯定理相区分,那里是λμν=-1)编辑本段塞瓦定理推论 1.设E是△ABD内任意一点,AE、BE、DE分别交对边于C、G、F,则(BD/BC)·(CE/AE)·(GA/DG)=1 因为(BC/CD)*(DG/GA)*(AF/FB)=1,(塞瓦定理)所以 (BD/CD)·(CE/AE)·(AF/FB)=K(K为未知参数)且(BD/BC)*(CE/AE)*(GA/DG)=K(K为未知参数)又由梅涅劳斯定理得:(BD/CD)*(CE/AE)*(AF/FB)=1 所以(BD/BC)*(CE/AE)*(GA/DG)=1 2.塞瓦定理角元形式 AD,BE,CF交于一点的充分必要条件是: (sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1 由正弦定理及三角形面积公式易证 3.如图,对于圆周上顺次6点A,B,C,D,E,F,直线AD,BE,CF交于一点的充分必要条件是: (AB/BC)*(CD/DE)*(EF/FA)=1 由塞瓦定理的角元形式,正弦定困纯理及圆弦长与所对圆周角关系易证。 4.还能利用塞瓦定理证三角形三条高交于一点 设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定 理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(AE*ctgB)]=1,所以三条高CD、AE、BF交于一点。编辑本段数学意义 使用塞瓦定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来进行三点共线、三线共点等问题的判定方法,是平面汪袭咐几何学以及射影几何学中的一项基本定理,具有重要的作用。塞瓦定理的对偶定理是梅涅劳斯定理。塞瓦定理曾被我国著名数学家华罗庚先生和苏步青先生改编为1978年的一道数学竞赛题。