纳维斯托克掘模侍斯方程是牛顿第二定律在不可压缩粘性流动中的表达式。简称N-S方程。
纳维斯托码正克斯方程,是描述粘性不可压缩流体动量守恒的运动方程。粘性流体的运动方程首先由Navier在1827年提出,只考虑了不可压缩流体的流动。Poisson在1831年提出可压缩流体的运动方程。Saint Venant在1845年,Stokes在1845年独立提出粘性系数为一常数的形式,现在都称为N-S方程。
从理论上讲,有了包括N-S方程在内判吵的基本方程组,再加上一定的初始条件和边界条件,就可以确定流体的流动。但是,由于N-S方程比欧拉方程多了一个二阶导数项。,因此,除在一些特定条件下,很难求出方程的精确解。
可求得精确解的最简单情况是平行流动。这方面有代表性的流动是圆管内的哈根-泊肃叶流动(详见管流)和两平行平板间的库埃特流动(详见牛顿流体)。
在许多情况下,不用解出N-S方程,只要对N-S方程各项作量级分析,就可以确定解的特性,或获得方程的近似解。